

GENERA 2024 MESA 2

6-Febrero-2024

ASOCIACIÓN ESPAÑOLA PARA LA PROMOCIÓN DE LA COGENERACIÓN

Sesión 2: RENOVACIÓN, SUBASTAS Y ALMACENAMIENTO Y OTRAS SOLUCIONES TÉRMICAS.

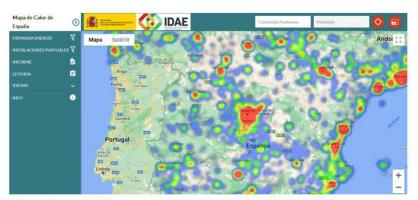
MODERADOR: JULIO ARTIÑANO, PRESIDENTE DE COGEN ESPAÑA

INTRODUCCIÓN A LA SESIÓN: LA COGENERACIÓN EN LA TRANSICIÓN ENERGÉTICA. JAUME ROQUETA, DIRECTOR DE I+D, AESA.

- ***** MARCO DE SUBASTAS DE COGENERACIÓN: JESÚS FERRERO, SDG DE RENOVABLES, MITERD
- ❖ RENOVACIÓN DE INSTALACIONES & PROGRAMAS DE AYUDA: LOPE DEL AMO, JEFE DEL DEPARTAMENTO DE TRANSFORMACIÓN DE LA ENERGÍA, IDAE
- ALMACENAMIENTO TÉRMICO Y OTRAS SOLUCIONES TÉRMICAS:
 - *** MARTA ANCHÚSTEGUI, DIRECTOR PROJECT DEVELOPMENT, ENERGYNEST**
 - * NOELIA CEJUDO, INGENIERÍA IBERIA, KYOTO GROUP
 - **❖ JULIA REIG, INTEGRATED ENERGY SOLUTIONS, GREENENESYS**
 - ***** CARMEN PEREZ, HEAD OF SALES DISTRIBUTED SOUTH WEST EUROPE, SIEMENS ENERGY.

COLOQUIO

RESUMEN: ALMACENAMIENTO TÉRMICO



La Cogeneración en la transición energética

LA COGENERACIÓN EN LA TRANSICIÓN ENERGÉTICA

Genera 2024

Jaume Roqueta jaumeroqueta@aesa.net 6 febrero 2024

https://mapadecalor.idae.es/

RENOVACIÓN DE INSTALACIONES & PROGRAMAS DE AYUDA

Líneas de ayudas dirigidas a titulares de plantas de cogeneración en España PRTR – FEDER

Jornada cogeneración y la industria Genera 2024

RESUMEN: ALMACENAMIENTO TÉRMICO Y OTRAS SOLUCIONES TÉRMICAS

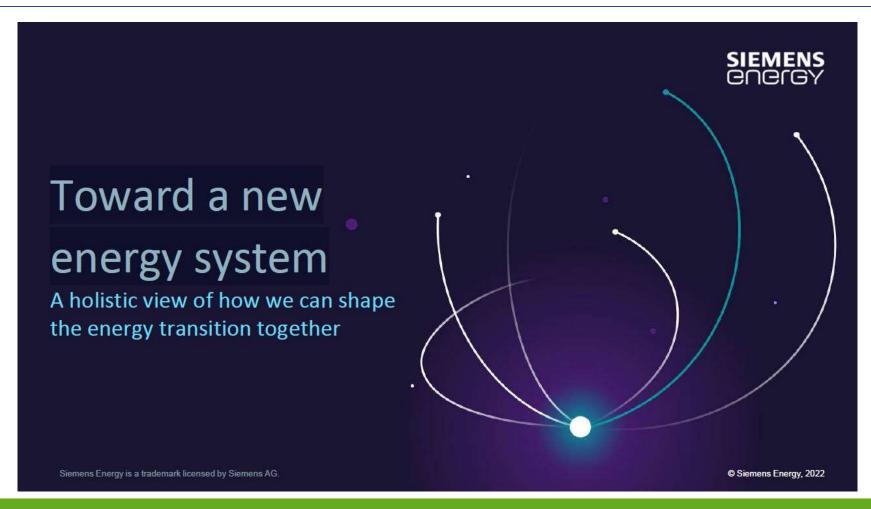
	Tecnólogo	País Origen	Tecnología	Tamaño almac. MWht (rango)	Capac. de descarga MWt		Configuración técnica	Vida útil esperada	Referencias
		ALMACENAMIENTO TÉRMICO							
E	NERGYNEST	NORUEGA (1)	HEATCRETE ® (Hormigón de alto rendimiento)	2-1.000+	0,5-100+	TEMPERATURA: 125-400°C PRESIÓN + 100bar FLUIDO: VAPOR (Saturado o sobrecalentado), HTF, AGUA	*Sistema de Carga: - Caldera eléctrica de vapor o aceite. Independiente de sist almacenamiento para dar flexiblidad al sistema y reducir opex - Intercambiador de calor para recuperación de calor - Integración directa en redes de vapor - Integración directa con CST *Sistema de Almacenamiento basado en HEATCRETE (hormigón de alto rendimiento) *Sistema de Descarga: - Generador de Vapor - Intercambiador de Calor - Directa a proceson (+flex)	+ 30 años	PILOTO: • Masdar Institute (Abu Dhabi) CST - 1MWh TB. EN OPERACIÓN: • YARA (Noruega) Planta fertilizantes - Steam Grid Balancing - 4MWh TB. EN CONSTRUCCIÓN (Puesta en marcha 2024) • ENI (Sicilia) Refinería. CST (HTF) + 3MWh TB. • Avery Dennison/Azteq (Bélgica). Adhesivos. CST (HTF) - 5MWh
H	уото	NORUEGA & ESPAÑA	Sales fundidas	16 - 120	≤20 MW	Carga: - Eléctrica proveniente de fuentes renovables o de la red aprovechando la curva de precios de la energía Recuperación de Calor Descarga: - Vapor Sat. o Sobrecalentado (135-400°C) - Transferencia térmica a un fluido (aire, aceite, etc) Posibilidad de carga y descarga simultánea	Sistema de Carga: - Resistencias Eléctricas - Intercambiador de calor para recuperación de calor Sistema de Almacenamiento en tanques de sales fundidas Sistema de Descarga: - Generador de Vapor - Intercambiador de Calor	+ 25 años	- Tecnología de almacenamiento en sales fundidas masivamente utilizada en las plantas termosolares - EN OPERACIÓN: Ciclo Combinado NJV Dinamarca (24 MWht almacenamiento) - EN EJECUCIÓN: Kall Ingredients - Sector Alimentario (Carga 10 MWe Almacenamiento 56 MWht) - ESTUDIO DE FACTIBILIDAD: Klingelle (Sector Papel) - Proyectos Presentados al PERTE de Almacenamiento Térmico (Oct'23) y en preparación para el PERTE de Descarbonización
/	RENMILLER GREEN NESYS	ISRAEL	machacadas	Solución modular escalable sin límite de capacidad	Concepto escalable sin límite de potencia		Integrado: Almacenamiento de Calor + Intercambiador de Calor + Generador de Vapor (sin partes móviles ni químicos). Resistencias eléctricas integradas en el equipo	+ 30 años (sin degradación por tiempo ni número de ciclos)	OPERACIÓN: IDF 1 MWh (Israel), FORTLEV 2x2 MWh (Brasil), NYPA 1 MWh (EE.UU) COMMISSIONING/PeM: ENEL 23 MWh (Italia) INGENIERÍA/DESARROLLO: PPF 30 MWh (Hungría), Wolfson Hospital 12 MWh (Israel), Tempo Beverage 32 MWh (Israel), SolWinHy Cadiz 55 MWh (España)
	OTRAS SOLUCIONES TÉRMICAS								
9	IEMENS	TOWARDS A NEW ENERGY SYSTEM: A HOLISTIC VIEW OF HOW WE CAN SHAPE THE ENERGY TRANSITION TOGETHER							

Notas:

1. Sedes en Sevilla y Hamburgo

ALMACENAMIENTO TÉRMICO

ALMACENAMIENTO TÉRMICO


ALMACENAMIENTO TÉRMICO

OTRAS SOLUCIONES TERMICAS

COGEN ESPAÑA

Dirección de correo postal:

C/Aragó 383, 4ª planta, 08013 Barcelona

Contacto para asuntos legales y administración:

Mónica García Solanas mgarcía@cogenspain.org

M: 615 21 65 05

Contacto para asuntos técnicos y regulatorios:

Olga Monroy García omonroy@cogenspain.org

M: 607 28 30 70

Contacto para asuntos generales:

Julio Artiñano jartinano@cogenspain.org M: 629 270 490

Os invitamos a seguirnos en redes sociales:

Twitter: @cogenspain

LinkedIn:@cogen-España

web: https://www.cogenspain.org/

cogeneración

la forma más inteligente de ahorrar energía

COGEN España Asociación Española para la Promoción de la Cogeneración C/Aragó n 383, 08013 Barcelona www.cogenspain.org

Gracias

Asóciate a COGEN España

ASOCIACIÓN ESPAÑOLA PARA LA PROMOCIÓN DE LA COGENERACIÓN

