Kawasaki Gas Turbine Europe GmbH

CHP and Combined Cycle-Plants

Hydrogen in the Decarbonization of Industry KAWASAKI HYDROGEN ROAD

Development of Innovative Hydrogen Technologies for Future Hydrogen Society

GENERA 2024- Madrid 06th February 2024

Kawasaki - Introduction Kawasaki Hydrogen Road Future H₂-Market

Kawasaki - Introduction Kawasaki Hydrogen Road Future H₂-Market

Kawasaki Gas Turbine Europe

Products

Gas Turbine Generator Sets

GPB17D 1,800 kWel η = 28.1 %

GPB50D 4,700 kWel η = 32.6 %

GPB80D 7,800 kWel η = 33.6 %

GPB180D 18,500 kWel η = 34.3 %

GPB300D 34,300 kWel η = 40.3 %

Gas Engines

KG18

KG12 5,200 kWel η = 49.0 %

KG18-V 7,800 kWel 7,800 kWel n = 49.0 % n = 49.5 %

@ ISO-conditions

A Services

Engineering

Preliminary Engineering **Detailed Engineering**

Implementation

Project Planning Customized Packaging **Erection Commissioning**

Maintenance

Scheduled Maintenance Trouble Shooting Spare Parts, Consumables General Overhaul Remote Monitoring

Kawasaki - Introduction Kawasaki Hydrogen Road Future H₂-Market

Kawasaki Heavy Industries

Hydrogen Road

H2-Production and Liquefaction

H2-Storage Tanks

H2-Oversea Transportation H2-Land Transportation

H2-Gas Turbines H2-Compressors

8

Hydrogen Road of Kawasaki Heavy Industries (кні)

Heat & Power Supply With World's First 100% H2-CHP Plant at Kobe Port – Since 2018

Project Summary with hydrogen retrofit

GPB17D-H2 / Chevron Phillips Chemicals (BE)

Challenges

- highest efficiency needed
- full flexible 0 30vol% Hydrogen capability
- 15 ppm NOx
- chemical plant ambient

Project key data

Commissioning	August 2021	
Hydrogen retrofit	September 2023	
Electrical Output (ISO)	1.8 MW	
Electrical Efficiency (ISO)	28.1%	

Project background:

Supplementation of Steam Generator by one GTGS with usage of Hydrogen

Joint undertaking of Kawasaki & RWE

RWE and Kawasaki plan to install a 100% hydrogen-capable industrial-size gas turbine in Lingen, Germany

- From 2024 onwards 34-megawatt plant could reconvert green hydrogen to power
- In future, H2-fuelled power plants will contribute significantly to green security of supply

Kawasaki - Introduction Kawasaki Hydrogen Road Future H₂-Market

Market dynamics based on the number of projects

Hydrogen momentum is strong: more than 1,000 project proposals have been announced globally

Globally, the industry has announced more than 1,000 large-scale project proposals as of the end of January 2023. Since the previous publication,² more than 350 new proposals have been announced. Of the total, 795 aim to be fully or partially commissioned through 2030 and represent total investments of USD 320 billion of direct investments into hydrogen value chains through 2030 (up from USD 240 billion).

Europe remains the global leader in hydrogen project proposals, with the highest total investments (USD 117 billion, 35% of global investments) and highest absolute growth (USD 40 billion). Latin America and North America follow Europe, each representing about 15% of announced investments. Growth in North America increased following the announcement of the IRA (see Section 03 of this publication).

Giga-scale project proposals (over 1 GW of electrolysis for renewable hydrogen supply or more than 200,000 kt p.a. of low-carbon hydrogen) account for 112 project proposals (requiring about USD 150 billion investment until 2030), nearly doubling from 61 eight months ago. Of these 112 proposals, 91 are renewable and 21 are low-carbon hydrogen.

Momentum is strong, and the industry is planning investments into clean hydrogen, yet much more needs to be done. To be on track to net zero in 2050, more than a doubling of announced investments is needed by 2030 – and these need to be matured and deployed.

Hydrogen Insights 2022 with data from May 2022;

unless stated otherwise

comparisons in this report are relative to this publication

Source: "Hydrogen Insights 2023: An update on the state of the global hydrogen economy, with a deep dive into North America ", Hydrogen Council and McKinsey, 05/2023

14

European Green Deal

© KAWASAKI Gas Turbine Europe GmbH. All Rights reserved.

Source: EU Infrastructure Atlas 2020

Importance of hydrogen for the decarbonization of individual sectors

	Industry	Transportation	Energy supply	Building
No real alternative to H ₂	Steel industryChem. industry	Long-haul flightsShipping	Long-term storage for seasonal generation	 High-temperature heat for district heating supply Partial replacement of gas in unrenovated areas
Comparably better alternative to H ₂	 Industries with high- temperature processes 	 Heavy commercial vehicles Short-haul air traffic Inland navigation 	 Medium-term storage 	
Better alternative to H ₂	 Industries with low- temperature processes 	 Passenger car Light commercial vehicles 	 Short-term storage for backing up power generation 	 Individual houses, local and district heating up to 90°C with the use of heat pumps

Source: Based on: Presentation by PWC: "The Hydrogen Compass", Albersmann, J. (Energy Consulting), 11.05.2023

Hydrogen Market Outlook

HYDROGEN COULD PROVIDE UP TO 24% OF TOTAL ENERGY DEMAND, OR UP TO ~2,250 TWH OF ENERGY IN THE EU BY 2050

Powering your potential

Supply routes for low-carbon hydrogen

Pros & Cons

End-Use Application Defines The Path

- + Easy and cheap reconversion + Pure hydrogen (6.0) without PSA
- + Production of cold
- + Boil-Off-Gas can be used for propulsion
- + Compression in liquid phase
- Challenging technology with expensive production, transport and storage
- Energy intensive production
- + Easy and safe handling
- + Using of existing oil infrastructure
- Fluid carrier can be reused, but requires to be shipped back
- High degradation of fluid carrier, reuse is limited
- Expensive fluid carrier, 6% only is H2
- Reconversion is very energy intensive
- + Production, transportation and storage is proven
- + Using of existing infrastructure (LPG, etc)
- Reconversion is energy intensive
- Immature ammonia cracker
- Toxic, handling and storing restrictions in residential areas, limited options for in-land distribution
- High NOx-Emission (Fuel Nox)
 - Powering your potential

Hydrogen infrastructure of the future

What is currently happening on the part of infrastructure operators?

The EHB initiative (European Hydrogen Backbone)

- Group of 32 energy infrastructure operators
- The aim is to accelerate decarbonization by:
- Definition of the role of hydrogen infrastructure based on existing and new pipelines
- Development of a Europe-wide market for renewable/low-CO₂ energy sources
- Promoting competition on the market
- Securing the supply
- Promoting cooperation between European countries

But:

Source: "Five hydrogen supply corridors for Europe in 2030, Executive Summary", EHB, 06.2022

European H2 network development plan according to EHB

Estimation of H₂ cost in 2030

2.54 €/kg Hydrogen cost (CIF)@2030

Target Scope of the Cost Analysis in Liquefied Hydrogen Supply Chain

Precondition for Hydrogen Cost Calculation in 2030

Item	Unit	FS results
Victorian Coal Consumption	Mt / y	4.74
Victorian Coal Cost	€/t	9.5
CCS Amount	Mt / y	4.39
CCS Cost	€/t	9.5
Hydrogen Production	t/d	770
Hydrogen import in JPN	t / y	225,540

Item	Unit	Condition
Project period	year	30
Borrowing period	year	15
Years of depreciation	year	15
Тах	%	30
Investment and debt ratio	-	50 : 50
Borrowing rate	%/y	3

Impact of Hydrogen Admixing on CO₂ Reduction

Gas Composition [vol%]			
	L-Gas	H-Gas	Meth ane
CH4	81.8	93.0	100
C2H6	2.8	3.0	-
C3H8	0.4	1.3	-
C4H10	0.2	0.6	-
CO2	0.8	1.0	-
N2	14.0	1.1	-

Kawasaki Gas Turbine Europe – Sales Dpt. Contact details

KA	KAWASAKI Gas Turbine Europe		Soljet Energia S.A.	
Neh	nringstrasse, 15	Paseo de la Castellana 154, 1º		
D-6	1352 Bad Homburg, Germany	28046 Madrid		
	+49 (0) 6172 7363 - 0		+34 (0) 91 4587732	
昌	+49 (0) 6172 7363 – 55	₽	+34 (0) 91 4579931	
	www.kawasaki-gasturbine.de		http://www.soljet.com	
	info@kge-gmbh.com	Ð	soljet@soljet.com	
Hea	ad of Sales	Director Comercial		
	Shahrad Adjili		Ricardo Balzola	
	+49 (0) 61727363 – 21		+34 (0) 91 458 7732	
	Adjili@kge-gmbh.com	G	rbalzola@soljet.com	
Sal	es Spain	Business Development Directo		
	Mohsen Tavangar		Julian Suarez - Guanes	
	+49 (0) 61727363 – 27		+34 (0) 91 458 7732	
	m.tavangar@kge-gmbh.com	G	jfsg@soljet.com	

"Global Kawasaki"

